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Abstract. A new approach for topographical global minimization of a functfaw), x € A C R"

by using sampled points ia is presented. The globally sampled points are firstly obtained by
uniform random sampling or uniform sampling with threshold distances. The point with the lowest
function value is used as the nucleus atom to start a crystal growth process. A first triangular nucleus
includes the nucleus atom and two nearest points. Sequential crystal growth is continued for which a
point next closest to the nucleus atom is bonded to the crystal by attaching to two nearest solidified
points. A solidified point will be marked during the crystal growth process if any of two connected
points has a lower function value. Upon completion of entire crystal growth process, all unmarked
points are then used as starting points for subsequent local minimizations. Extension of the topo-
graphical algorithms to constrained problems is exercised by using penalty functions. Formulas for
estimation on the number of sampled points for problems with an assumed number of local minima
are provided. Results on three global minimization problems by two topographical algorithms are
discussed.
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1. Introduction

The objective of this work is to develop a new approach in topographical global op-
timization algorithms for solving the global minimum of an unconstrained function
f(x)in A C R". The global optimization methods comprise two major branches:
the deterministic methods (Horst and Tuy, 1992) and probabilistic methods. The
probabilistic methods primarily comprise random search methods, clustering meth-
ods (Torn and Zilinskas, 1989) and emergent nature-simulated methods such as
genetic algorithms (Goldberg, 1989) and simulated annealing (Kirkpatrick et al.,
1983). The topographical global optimization algorithms (T6rn and Viitanen, 1992,
1994) that we tried to improve belong to a general category of clustering methods.
Topographical information about the objective functions of sampled points located
in the search space is used to construct a directed topograph. In the topograph, any
point with all k nearest neighbors having higher objective function values becomes
a near-minimum point in a simulated basin consisting of at least tmmpared
points. The crystal growth approach proposed in this paper belongs to topograph-
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ical global optimization methods. It serves to provide an algorithm in which no
performance-depending parameters are required so that the search efficiency and
reliability will be increased.

The paper has the following structure. Section 2 contains a more detailed de-
scription of the topographical global optimization method proposed in (T6rn and
Viitanen, 1992, 1993). The major drawback of the topographical algorithm is also
explained. In Section 3, the crystal growth approach in the topographical algorithm
will be described in detail. An estimation formula on the size of sampled points
needed to obtain a good covering based on an assumed number of basins in the
search domain is also proposed. Section 4 comprises results of experiments apply-
ing both topographical algorithms in three illustrative problems consisting of one
constrained minimization problem and two unconstrained minimization problems.

2. The topographical algorithm

The topographical algorithm proposed by Tdérn and Viitanen (1994) consists of
two parts. The undirected topograph is first constructed in the ‘sampler’ process
by acceptingVv randomly generated points in which any two points are separated
at least with a prespecified threshold distance. The sampled points accordingly
created will form a uniform distribution to cover the region better than a uniform
random sampling. The coordinates of accepted points are stored-matrix. The
sampler process is terminated after the constructionkefzamatrix containing the
identifications ofk nearest neighbors to every point, sorted by distance.

The second part of the topographical algorithm mainly consists of the construc-
tion of the directed topograph and subsequent local minimizations. The construc-
tion of the directed topograph starts from evaluating the function value for each
point in theC-matrix. Function values are compared between each element in one
of all rows in theknn-matrix and the point from which thieelements are nearest.
The element in the row will be marked if it has a higher function value, otherwise it
will be unmarked. Finally thénn-matrix will be scanned for all rows that contain
only marked elements. These rows represent points for whighradharest neigh-
boring points have higher function values and they can be used as initial points
for subsequent local minimizations. These points should also be checked so as
to make sure that they are not marked anywhere inkthematrix. The number
of local minima in a directed topograph is heavily dependent on the valie of
selected. I is chosen too small, the number of possible minima will be large that
consequently demands extra computational cost to obtain the global minimum. For
k equal toN the number of potential minima will be 1 since only the point with the
smallest function value will be qualified.

Although the topographical optimization algorithm is simple and robust, two
drawbacks remain. Two most important parameters needed to be defined by the
user in the topographical optimization algorithm a@ndN. There exist no guide-
lines to select appropriate values for them. The method may fail to locate the global



A CRYSTAL GROWTH APPROACH FOR TOPOGRAPHICAL GLOBAL OPTIMIZATION 257

optimum or waist unnecessary computational resources for a poor selection of
value even ifN is properly defined. These is a need to create a modification on
this part of topographical optimization algorithm in which the modified version
will search the potential minima without any parameter other thatt will be all
agreed thatV is difficult to properly define without a thorough understanding on
the spaced. However, it would be useful to have estimation formulas for praper
values to use based on an assumption of the number of local minima in the space
A. The crystal growth approach was proposed to provide a more stable algorithm
in which no parameters other than have to be defined. The guideline to select
proper values ofV based on an assumption of the number of basins is described in
the following section.

3. Topographical optimization with crystal growth approach

The algorithm consists of three parts: the sampled point placement process, the
potential local minima determination process and the local minimizations to find
the global optimum. The sampling process using a prespecified threshold value to
obtain uniform distribution of sampled points in the space is also suggested in the
crystal growth approach. Sampled points obtained by other sampling procedures
can also be used for the crystal growth approach with varied effects depending on
the distribution of points and local basins.

3.1. CRYSTAL GROWTH PROCESS

The crystal growth approach for topographical optimization is basically responsi-
ble for the discovery of points serving as initial points for potential local minima.
The crystal growth approach consists of the following steps:
1. Rank all sampled points according to their objective function values.
2. The point with the lowest function value is defined as the core of the nucleus.
3. The core and two nearest points form a triangular nucleus from which a crystal
growth process starts.
4. The third (next) nearest point to the core will be bonded to the two nearest
points among all points in the polycrystal and form a new triangular single
crystal. If the new point has a higher objective function value than any of two
connected points in the polycrystal the new point is marked.

. Process (4) is continued until all points are bonded to the polycrystal.

. Sequentially repeat steps from (3) to (5) by using the unmarked point with the
next lowest function value as the new nucleus core until all unmarked points
have been used as cores.

7. All final unmarked points are promising initial points for local minima.
The procedure of the crystal growth approach may be illustrated by following
examples. Assume that total of six sampled points are created in the(apac®

as shown in Figure 1. The function value for each point is evaluated and used as

o 01
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X, 1

Figure 2. The directed topograph comprising three local minima.

the index number for each point for convenience. The point 1 is used as the core of
the nucleus to form the triangular nucleus that consists of the core and two nearest
points 6 and 5 with a distanceaid 7from the core, respectively. Since both points
have higher function values than the core, points 6 and 5 are marked and shown in
black circles in the figures. Once a new single crystal is formed, an arrowed arc
will be drawn from a point of a higher function value to a point of a lower value.
The third (next) nearest point from the nucleus core is now point 2 which is thus
bonded to two nearest points 6 and 1 from all solidified points 1, 6 and 5 and forms
a second single crystal. The point 2 is marked because it has a higher function value
than one of two points to which itis connected. The next nearest point from the core
is point 3 and a new crystal is formed by attaching point 3 to points 1 and 2. For
the same reason as for point 2, point 3 is marked. The next nearest point from the
core and also the last point in the space is point 4. A last single crystal is formed by
attaching point 4 to points 2 and 3 which are two nearest points among all solidified
points to point 4. Point 4 is marked since point 2 has a lower function value. After
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X,

Figure 3. The directed topograph comprising two local minima.

all sampled points have been solidified, only point 1 leaves unmarked. Therefore,
point 1 will be used as the sole promising initial point for a local minimization.
Another example involves 10 sampled points in a 2-dimensional space. Identical
usage of indices as used in the first example is used in this example. A first run of
crystal growth will result in a directed topograph as shown in Figure 2. There are
three unmarked points 1, 2 and 4 at the end of the first crystal growth process. Since
point 2 is still unmarked and has the second lowest function value of all, it will be
used as a new core to start a second crystal growth process. After three crystals are
formed points 2, 3, 8, 7 and 6 are sequentially solidified. When the next nearest
neighbor, point 4, is connected to points 6 and 3 and forms a new crystal, point 4
is then marked due to its higher function value than point 3 as shown in Figure 3.
At the end of the second crystal growth process, points 1 and 2 remain unmarked.
A third crystal growth process using point 2 as the core fails to create new results.
Finally, points 1 and 2 are considered as near local minimum candidates. It is noted
that there is no parameter needed to be defined by the user in order to apply the
crystal growth approach. Chances of failure to discover the global minimum and
unnecessary computational cost resulted from an impropalue can be reduced
by using the parameter-light crystal growth techniques.

3.2. ESTIMATION OFN

A larger value ofN will demand a larger number of function analyses before and
during the local minimizations. A small value dfwill result in incorrect judgment

in the topograph construction process for which a large number of unnecessary
points for an identical minimum may be selected. In order to find the global opti-
mum using the topographical approach effectively, the valué néeds to be large
enough to place a couple of sampled points around each basin containing a local
minimum. An estimation formula for a “proper” value of based on a predicted
number of basins is provided and explained as follows:
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Assume thain basins exist in a space efvariables and the valid range between
the lower bound and the upper bound is representédfasthei-th variable. The
effective number ofn basins in the-th dimension can be expressed as

l:

m; = int mn—l D)

2k
k=1

whereint represents an integer function.

The effective number of basins for each dimension can be then used to com-
pute the necessary sampling points for the topographical algorithms to have good
results. At least one point needs to be located in each of effective basing iththe
dimension and at least one point will need to be located in each side of a basin, the
minimum number of sampled poinfg; required by the distributed basins in the
i-th dimension will be as follows:

N; =2m; +1 2)
The total numbelV of required sampled points fer basins is therefore as follows:
N=N1XN2XN3---XN,1 (3)

It is noted that although the equation (3) provides a proper number of sam-
pled points for a design space with an assumed number of local minima based on
an assumption that all sampled points are ideally distributed. The actual number
of sampled points required will be larger according to different sampling tech-
niques. For a same number of sampled points in a design space, the probability for
two points to become too close by using the uniform distribution with a thresh-
old distance will be significantly lower than other random sampling techniques.
The equation which suggests the enlarged humber of sampled p&inequired
according to different sampling techniques is defined as follows:

N* N 01<p<09 4
logil—pl P T
wherep represents the clustering parameter for different sampling techniques.

For a random uniform sampling, an appropriate valug @ between 0.4 and
0.5. The uniform sampling with a maximum threshold distance will have a highest
value ofp, 0.9, therefore less sampled points defined by (3) are needed to cover the
space with equal effectiveness. Although the number and sizes of basins in a given
space are generally unknown, the estimation formulas offer a unique advantage. If
the number of basins is known or can be estimated using any algorithm, formulas
defined in (1-4) will provide an economic size of sampled points which can cover
the nonconvex space with reasonable effectiveness.
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4. Experimental results

The crystal growth approach was tested and compared with the topographical al-
gorithm by Toérn and Viitanen in three global minimization problems. The first
problem is the Himmeblau’s function containing four minima of equal function
values. The second problem is a constrained global optimization problem contain-
ing six design variables and six linear constraints. The last problem involves a
modified exponential bump function with ten design variables and at least twenty
local minima.

4.1. HIMMEBLAU'S FUNCTION

The Himmeblau’s function and its bounds are defined as follows:
Fx,y) = (x®+y—11 + (x +y* = 7)*
—5<x<5 -5<y<5

(®)

Two sampling methods consisting of the uniform threshold sampling and the uni-
form random sampling are used. The valuepah (4) is set as 0.9 and 0.5 for the
uniform threshold sampling and the uniform random sampling, respectively and
accordingly 25 (5< 5) and 83 (5x 5/0.301) points are created in two cases for the
topographical minimization. The distribution of the 25 sample points (threshold
distance 1.61) represented by solid circles in the space is shown in Figure 4, in
which four potential minima or unmarked points obtained by the crystal growth
approach are identified by single circles. The four unmarked points can lead to all
four existing minima after local minimizations are executed. The performance of
Torn and Viitanen’s algorithm based on identical 25 sampled points with varied
values ranging from 2 to 15 is shown in Figure 5. It is noted thateguals 2, the
number of potential minima is 7 of which 3 are redundant. Whéngreater than

5, the number of potential minima is less than 4 so that some relative minima fail
to be identified.

A topograph comprising 83 randomly generated sampled points and the four
potential local minima formed after the crystal growth process was completed is
shown in Figure 6. The four following local minimizations discovered also all four
local minima in the space. The performance of Térn and Viitanen’s algorithm based
on identical 83 sampled points is shown in Figure 7. With sufficient sampled points,
all four relative minima are eventually located inaNalues. Compared with four
in crystal growth approach, sixteen local minimizations were required ik the
2 case. Results of two sampling cases showed that the crystal growth approach
performed more accurate and efficient than the counterpart algorithm with varied
k values.
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Figure 4. The topograph and local minima of 25 sampled points generated with a threshold
distance for Himmeblau’s function.
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Figure 5. Numbers of potential and located minima from 25 sampled points with véaried

4.2. CONSTRAINED GLOBAL MINIMIZATION

To test both topographical algorithms in problems of higher complexity and di-

mensionality, this constrained problem consisting of six variables and six linear
constraints was used. This problem is included in a collection book of constrained
global optimization problems (Floudas and Pardalos, 1990). The problem state-
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Figure 6. The topograph and local minima of 83 randomly generated sampled points for
Himmeblau’s function.
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Figure 7. Numbers of potential and located minima from 83 sampled points with véried
values.

ment is as follows:

MIN F(X,U) = x904x3% 4 x24 + 2uy + Buy — 4x3 — u3 (6)
st.xo—3x1—3u; =0
x3—2xo—2u; =0
Aui — uj =0

X1+ 2uq <4
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X2+ up <4
X3+ us <6
X1 <3
Us <2
X3 <4
X1, X2, X3, U1, U, u3 =0

In order to extend the topographical algorithms to constrained minimization prob-
lems, a pseudo-objective function often encountered in the sequential unconstrained
minimization techniques (Fiacco and McCormick, 1968) is defined as follows:

®(X,U) = F(X,U) + P(X,U) @)

whereP (X, U) is the penalty function which transfers the constraint violations into
the penalty on the objective function. The parameferepresents the multiplier
which controls the magnitude of the penalty. The penalty function is defined as
follows:

POGU) =1y { 31006 W)+ Y le (X, W) ®)

whereh (X, U) represents the equality constraint functions, g€, U) represents
the inequality constraint functions.

In this problem,r, was selected as the absolute value of the mean of the ob-
jective functions of the 350 sampled points obtained by a threshold distance. The
directed topographies of the 350 sampled points by both algorithms are exclusively

Table 1. Comparison of two algorithms in the constrained problem

Number of Number of Number of function
k potential minima  relative minima evaluation used

2 64 11 4802
3 35 8 3036
Torn and 4 25 6 2087
Viitanen’s 5 17 5 1659
algorithm 6 13 4 1320
7 11 3 1162
8 10 3 1092
Crystal growth  — 11 7 1106

approach
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based on the pseudo-objective function values. The crystal growth approach and the
topographical algorithm witk varied from 2 to 8 were executed on 350 threshold
sampled points. The results are listed in Table 1. All approaches led to the global
minimum despite of varied number of relative minima obtained. It is clearly shown
that the crystal growth approach provided a relatively stable and efficient algorithm
than the counterpart algorithm in which loweralues demanded a great amount

of computation while highek values located less relative minima.

4.3. TEN-VARIABLE EXPONENTIAL BUMP FUNCTION

The third problem involves a modified exponential bump function defined as fol-
lows:

20

F(X) =100— Y [W; x EXP(=Y))] ©
i=1
where
10
Yi=PP | Y (X;—Pp’|; i=1~20 (10)
j=1

T 2-4 2-4 2-4 2-4 2-4]
2 4-2 4-2 4-2 4-2 4
-3 -3-3-3-3-3-3-3-3-3
3 3 333 3 3 3 3 3
-4 3 4 3 4-3 4 3 4 3
4-3 4 3 4 3-4 3 4 3
4 3-4 3 4 3 4-3 4 3
4 3 4-3 4 3 4 3-4 3
-3 2 3 2-3-2 3 2 3-2

b_| 3-2 3 2-3 2-3 2 3-2

| 3 2-3 2-3 2 3-2 3-2
3 2 3-2-3 2 3 2-3-2
—4-3-2 3 4 4-3-2-3 4
4 -3 2-3 4-4 3-2-3 4
4 3-2-3 4-4-3 2-3 4
4-3-2-3 4-4-3-2 3 4
-3-3-3 4-2 2-4-3-3-3
-3-3 3-4-2-2 4-3-3-3
-3 3-3-4-2-2-4 3-3-3
| 3-3-3-4-2-2-4-3 3-3]
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Table 2. Comparison of two algorithms in exponential function

k  Number of potential minima  Number of potential minima

(relative minima) (relative minima)
for 1000 sampled points for 2000 sampled points
Térn and 2 226 (18) 405 (18)
Viitanen's 3 119(14) 223(15)
algorithm 4 82(11) 144 (13)
5 61(11) 95(13)
6 41(9) 72(11)
7 33(8) 55(11)
8 29(6) 46 (10)
9 25(5) 37(9)
10 22(5) 29(9)
11 21 (5) 23(8)
12 18(5) 20(7)
13 16 (5) 18(7)
14 13(5) 17 (7)
15 13(5) 15(7)
Crystal growth
approach - 16 (13) 23(17)

PP =10.04,2 % 0.05,2 %« 0.04,0.05,4 % 0.04,0.05,0.03,0.05,0.04,
3 0.05,0.04,0.05,0.041"
W = [2%100,2 % 90,8 % 80,8 x 70]"

The design space of this problem consists of 20 customized valleys of var-
ied depths and widths, therefore, generally comprises at least 20 relative min-
ima. The best solution obtained from thousands of local minimization§ is
{1.825,—-3.876,1.908,—3.953,1.724, —3.835,1.901, —3.881, 1.790 —3.869}
with an objective function of-7.536. For this problem of 10 variables, the number
of sampled points suggested by (3) is prohibitively large so that two cases, 1000
(threshold distance 6.15) and 2000 (threshold distance 5.80) sampled points, were
studied for both topographical algorithms. The results are shown in Table 2. All
algorithms reported in Table 2 located the best solution despite of varied num-
ber of relative minima finally obtained. A consistent trend was also found in this
problem that the crystal growth approach performed the best in the ratio of the
potential minima over the relative minima. With an improved covering, from 1000
to 2000 sampled points, the crystal growth approach obtained 17 relative minima
by execution of only 23 local minimizations. The Térn and Viitanen’s algorithm
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(k = 2) obtained the most 18 relative minima after 405 local minimizations which
are almost as much as 18 times required in the crystal growth case. With enlarged
values ofk, the Térn and Viitanen’s algorithm obtained less relative minima.

5. Concluding remarks

The crystal growth approach for the topographical algorithm overcomes the major
drawback of the algorithm by Térn and Viitanen. No sensitive and critical para-
meters such ak need to be defined by the user for the use of the crystal growth
algorithm. The crystal growth algorithm equipped with an interconnecting check-
ing system performs more efficient and reliable in locating minima with moderate
computation investment. The topographical algorithm by Térn and Viitanen is still
superior than the crystal growth approach in two items. The simpler algorithm for
programming, and the possibilities to discover more minima in verydoalues,
especiallyk = 2, with a great amount of computational effort. The large number
of local minimization prevents Torn and Viitanen’s algorithm from being practical

in global optimization problems in which the evaluation of the objective function
is time consuming. The extension of the topographical algorithms to constrained
problems was successfully exercised by using a penalty function approach. For-
mulas for the estimation d¥ needed to provide an effective covering was derived
based on the assumed number of basins in the search domain. These estimation
formulas provide the user a good estimation @nvalues in problems of low
dimensionality if the information on the number or sizes of basins in the space
is partly revealed.
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